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Motivation

Cardiovascular diseases, such as heart failure, are responsible
approximately 17 million deaths worldwide each year (WHO, 2021).




Motivation (cont.)
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Research Question

How accurately can machine learning models predict survival outcomes

among heart failure patients based on clinical features extracted from
electronic medical records?

> Secondary Interest: How does the predictive accuracy of different
machine learning algorithms compare in this context?
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Dataset Overview
Source: 299 heart failure patients, Faisalabad, E e

& Allied Hospital

Features: 13 clinical, demographic, and lifestyle

serum creatinine, anemia, diabetes, high blood of Cardiology
pressure Y S ST oo TS
Demographics: 105 women, 194 men, ages ey ALLIED HOSPITAL
40-95 8 FAISALABAD

Pakistan (2015)
K BMC
factors
Target: Survival outcome (died or survived)
DIGNITY IN SERVICE

Collected from: Faisalabad Institute of Cardiology
Notable Factors: Age, sex, ejection fraction, 2 Faisalabad Institute
Follow-up period: Average of 130 days




Features Of Interest
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Age: Older age increases risk for cardiovascular events and complicates heart
failure management, making it a key mortality predictor.

High Blood Pressure: Elevated blood pressure indicates that the heart is
working harder and over long periods of time can lead to chronic heart failure
increasing the mortality risk.

Ejection Fraction (EF): Low EF reflects reduced cardiac efficiency and is
strongly linked to heart failure severity, essential for assessing patient
prognosis.

Platelets: Abnormal platelet levels can indicate cardiovascular complications
like thrombosis, impacting survival rates in heart failure.

Serum Creatinine: Elevated levels indicate impaired kidney function, whichis
closely linked to poor outcomes in heart failure patients.

Serum Sodium: Low sodium (hyponatremia) often marks fluid imbalance and
disease severity, impacting mortality risk.

Time (Follow-Up Period in Days): Represents patient monitoring follow-up
period, helping assess disease progression and survival trends over time.




Data Preprocessing and Augmentation

> Nomajordata quality issues:
©  Nonullvalues
O Noduplicaterecords
O Nodatatypeissues
> Preprocessing:
©  Shufflingrecords
O Splitdatausinga 60/20/20 train test and validation split
O Standardize data using the training dataset
> Augmentation:
O Use Bayesian Information Criterion (BIC) to fit a Gaussian Mixture Model
(GMM) with the most optimal amount of clusters
O Generate 5000 samples from the GMM to augment dataset from 299 to
5299 records
O Cleanup binary data columns and standardize samples with original
training dataset

|||||||||||||||||||||||



PI'Oj eCt Plan Majority Classification

Supervised ML Models Unsupervised ML Models

Parametric ML Non-Parametric - K-Means Clustering
Models ML Models - Agglomerative Hierarchical Clustering
- Density-Based Spatial Clustering (DBSCAN)

- Gaussian Mixture Model (Data
Augmentation)

- Logistic Regression - K-Nearest Neighbors (KNN)

- Neural Network - Decision Tree - PCA/SVD*
- Functional API - Majority Vote (Ensemble)

- Random Forest

- Bagging

- Gradient Boosting
- Adaptive Boosting (AdaBoost)




Model Performance Metrics

> Chosen Metric: Accuracy

O Reason:Simple and suitable as our dataset is balanced between death and survival
cases.
> Alternative Metrics

O  Precision: Useful if false positives (predicting death when survival occurs) should be
minimized.

O Recall: Essential if catching all true death cases is critical, even with some false
positives.

O  F1Score: Balances precision and recall, ideal forimbalanced datasets.

O  AUC-ROC: Measures model’s ability to distinguish classes, helpful if class imbalance is
present.

O  Loss: Helpful in understanding the amount of errors in the test set.




Baseline Model

Class Distribution

Model: Majority Class Classifier

V.V

Within the training dataset we have a
total of 179 records

O 121 non-deaths
O 58deaths
Training Accuracy: 67.59%

Count of Records

o &
Death Event

Training Loss: 11.94 Baseline Test Confusion Matrix
Validation Accuracy: 63.33%
Validation Loss: 13.51 NorRenth |
Test Accuracy: 73.33%
Test Loss: 9.82
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True label

Death

Non-Death Death
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Model Results

b Model Train Accuracy Validation Accuracy Test Accuracy Test Loss Test Recall Test Precision
1 Augmented Gradient Boosting 0.883568 0.883333 0.850000  0.272829 0.6250 0.769231
2 Augmented Voting Classifier 0.966017 0.833333 0.850000  0.333343 0.7500 0.705882
3 Augmented Decision Tree 0.778336 0.783333 0.800000  0.335736 0.4375 0.700000
4 Random Forest 0.960894 0.866667 0.866667  0.340767 0.6875 0.785714
5 Augmented Logistic Regression 0.770033 0.833333 0.866667  0.351654 0.6250 0.833333
6 Augmented Sequential Neural Network 0.818112 0.883333 0.833333 0.352741 0.5625 0.750000
7 Logistic Regression 0.837989 0.800000 0.816667  0.365822 0.5625 0.692308
8 Augmented Random Forest 0.793976 0.850000 0.816667  0.391763 0.4375 0.777778
9 Voting Classifier 0.960894 0.766667 0.783333  0.402732 0.4375 0.636364
10 Augmented KNN 0.837807 0.850000 0.766667  0.418960 0.3750 0.600000
1" AdaBoost 0.865922 0.850000 0.850000  0.520810 0.6875 0.733333
12 Gradient Boosting 1.000000 0.850000 0.816667  0.548312 0.5625 0.692308
13 Augmented AdaBoost 0.863294 0.866667 0.833333  0.610284 0.5000 0.800000
14 Augmented Bagging Classifier 0.983008 0.883333 0.866667  0.884097 0.6250 0.833333
15 Bagging Classifier 0.983240 0.833333 0.800000  0.926520 0.5000 0.666667
16 KNN 0.832402 0.783333 0.800000  0.987466 0.4375 0.700000
17 Sequential Neural Network 0.977654 0.816667 0.783333 1.033662 0.6250 0.588235
18 Augmented Functional Neural Network 0.789342 0.816667 0.900000 3.604365 0.7500 0.857143
19 Functional Neural Network 0.849162 0.833333 0.833333  6.007276 0.7500 0.666667
20 Decision Tree 0.944134 0.816667 0.783333  6.671077 0.5625 0.600000
21 Baseline 0.675978 0.633333 0.733333  9.824363 0.0000 0.000000

Test Accuracy | Validation Accuracy | Test Accuracy | TestLoss | TestRecall | TestPrecision

Mean 88.85% 82.42% 56.25% 72.44%

SD 7.66% 3.32% ER WA 0.0317 10.92% 8.63%



Augmented Voting Classifier Model

Augmented Majority Vote Classifier Test Confusion Matrix

Non-Death -

> Model: Augmented Majority Vote _

> Training Accuracy: 0.9660 f

> Training Loss: 0.2201

> Validation Accuracy: 0.8333 -

> Validation Loss: 0.3735

> Test Accuracy: 0.8500 BT prctedlabel
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Augmented Voting Classifier Model

Improved

Probability-Based Voting (Soft): Instead of using

hard voting, soft voting helped make a weighted
decision. This improved performance by leveraging the
confidence of each estimator.

Augmented Voting Classifier Test Confusion Matrix

Non-Death

Decision Boundary: Lowering the threshold to 0.25

shifts our focus to improving recall. Reducing false
negatives is imperative when working with mortality
prediction.

Death

Cross-Validation: Tested different values of nearest NGRS —

Predicted label

neighbors and verified that k=5 provided the best
balance of performance metrics. (accuracy, precision,
and recall)
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Augmented Decision Tree Model

Augmented Decision Tree Test Confusion Matrix
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Augmented Decision Tree Model

dt_model = DecisionTreeClassifier(max_depth=5, random_state=1234)

> Hyperparameter Tuning

O Max Depth: The maximum depth of the tree determines the number of levels it can

expand. The model with ‘max_depth=5" achieved the best performance by striking a
balance between simplicity and complexity, avoiding overfitting while capturing sufficient
patterns to generalize effectively to unseen data. Smaller values led to underfitting,
while larger values caused overfitting.

O  Decision Boundary: When predicting death events for heart patients, a threshold of Augmented Decision Tree Test Confusion Matrix

0.3 is more suitable in situations where missing an at-risk patient could result in fatal
consequences. However, this approach increases the likelihood of false positives, whic

must be carefully assessed based on the available resources and the potential impact
of unnecessary interventions.

Non-Death

True label

new_éug_dt_test_pred = [1if i> .3 else 0 for i in(aug_dt_model.predict_proba(X_test))[:,1]] Death

Non-Death Death
Predicted label
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Augmented Gradient Boosting Model

Augmented Gradient Boosting Test Confusion Matrix

Non-Death -
> Model: Augmented Gradient Boosting
o
. . 2
> Training Accuracy: 0.8836 -
E
> Training Loss: 0.3068
> Validation Accuracy: 0.8833 Death
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> Test Accuracy: 0.85 Non-Death Death
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Augmented Gradient Boosting Model

gb_model = GradientBoostingClassifier(max_depth = 4, n_estimators=200, random_state=1234)

> Hyperparameter Tuning

O MaxDepth: The choice of ‘'max_depth=4" limits the complexity of

T . - . . Augmented Gradient Boosting Test Confusion Matrix
individual trees, preventing overfitting while allowing the model to . S

capture meaningful patterns in the data.

O Number Estimators: The choice of 'n_estimators=200" strikes a Nom-Death |

balance between improving the model's ability to learn complex
patterns and avoiding overfitting or excessive training time. It provides
sufficient iterations for boosting to refine predictions without
overcomplicating the model.

True label

O  Decision Boundary: Reducing the threshold from 0.5 to 0.25 was p—

chosen to increase recall by capturing all true positive cases ("Death")
while tolerating more false positives ("Non-Death" incorrectly classified
as "Death"). This approach is suitable in contexts like predicting death

Non-Death Death
events for heart patients, where missing true positive cases could have Predictad (bl

severe consequences, even at the expense of slightly lower precision.

new_;ug_gb_test_pred =I[! ifJi > .25 else 0 for i in(aug_gb_model.predict_proba(X_test))[:,1]1]
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Clustering Approach

Objective:

> |dentify patterns and structures in the data
> Anomaly detection

> Data Simplification

Algorithms Used:

> K-Means, Density-Based Clustering, Agglomerative Clustering
Dimensionality Reduction Techniques:

> Principal Component Analysis (PCA), Singular Value Decomposition (SVD)




Clustering Results (PCA)

K-Means Clustering Results (PCA)

K-Means SVD Clustering Results
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Clustering Scoring (Silhouette Scores)

Silhouette Score

AL (Higher is Better), [-1,1]
K Means K=2 0.1866
K Means (SVD) K=5 0.2255
DBSCAN Epsilon = 0.7, min_samples = 3 -0.2212
Agglomerative K=6 0.1688

Silhouette score was used as the metric to evaluate the clustering algorithms. K-Values
were decided by selecting the k values associated with optimal silhouette scores.

> Asilhouette score measures how well-separated and compact your clustersareina
dataset. Itranges from -1to 1, with higher values indicating better-defined clusters.

The k-means algorithm with SVD applied had the highest silhouette score




Clustering Conclusions

> Agglomerative Clustering had the highest silhouette score
HOWEVER it wasn’t indicative of the data being good for clustering.

> Adesirable silhouette scoreis >= 0.5 for defined clusters; no
algorithms yielded sufficient results.

> Asshowninthereduced plots, clusters have significant overlap
preventing us from drawing meaningful insights.

> Unsupervised Learning was not useful in this context.

Itis challenging to determine whether a heart failure patient will die or
survive simply by clustering the data, as the groups are not easily separable
and individuals from different outcomes often share overlapping clinical
features.




Conclusion

> Machinelearning models predicted mortality risk in HF
patients with an average accuracy of 85% (SD 5%).

> Non-parametric models outperformed parametric

models, with a lower average test loss of 0.98 (SD 1.66)
vs.2.25(SD 2.70).

> Augmented models performed better than

non-augmented models, with a test loss of 0.99 (SD
1.77) vs.1.72(SD 2.31).

> Augmented Gradient Boosting was the top model, with

accuracy > 0.85, test loss ~0.27, and <3% difference
across training, validation, and test accuracies.




Conclusion

Potential Biases

Augmented Data Validity: The GMM-based data

augmentation may not fully capture the true
distribution, potentially affecting result reliability.

Generalization Bias: Limited to two hospitalsin

Pakistan, with an age bias (40—-95 years) and gender
imbalance (194 males vs. 105 females), restricting
broader applicability.




Conclusion

> Models did not exceed 90% accuracy

across training, validation, and
testing datasets.

> Predictions should complement, not

replace, healthcare professionals'
clinical judgment

Future Work:

Explore advanced machine learning algorithms beyond DATASCI 207 for improved accuracy.

Focus on hyperparameter tuning for flexible models like Sequential Neural Networks and Functional
API.

Conduct a deeper bias and fairness analysis.
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