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Abstract

e Problem:
o Flight delays are a widespread issue; our team developed a predictive model to
classify departures as Early, On-Time, or Delayed using flight and weather data.
e Data Sources
o Combined U.S. Department of Transportation flight data with NOAA weather data;
over 28 million records analyzed.
e Modeling Approach
o Extensive feature engineering (including PageRank for airport centrality), time-series
encoding, and resampling methods to address class imbalance.
o Models: Logistic Regression, Decision Tree, Random Forest, and MLP
e Best Model
o A Random Forest classifier with oversampling achieved the best performance (Test F1
= 54.4%) with high accuracy for Early departures.
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Background

e Air travel is a complex web of logistics that
needs to be handled precisely in order to
coordinate departures and arrivals for 45,000
flights and 2.9M passengers per day.

e |tis beneficial for both airlines and for
passengers to be able to predict whether a
given flight will be delayed or not for a variety
of reasons:

o  Operational Efficiency: optimizing crew
scheduling, ground handling, and gate
assignments.

o Customer Satisfaction: Allows for airlines
to notify customers ahead of time to
reduce stress and allow them to plan
ahead.




Goal

e Utilizing flight data provided by the U.S. Department of Transportation and meteorological data
provided by the National Oceanic and Atmospheric Administration repository (NOAA), our goal
for this project is as follows:

Classify and predict flight departure times ahead of the scheduled flight to
determine whether a given flight will depart early, on-time, or late.
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Correlation Matrix of Continuous Variables

Numerical Analysis

DISTANCE - 0.03

DISTANCE_GROUP - 0.03

origin_station_dis- 0 0.01 0.01

e Strong negative correlations: st sestion. s N0 RS

o  ELEVATION and HourlyStationPressure ey

LONGITUDE - 0.02 -0.11 -0.1 -0.02 -0.03 0.08
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HourlyPrecipitation - 0.04 0 -0 -0 -0 -0 0.03 -0.02 -0.04 0.05 -0.02
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Target Variable Analysis

e We are interested in classifying 3 classes
o  Early (Delay < O minutes)
o  On-Time (O <= Delay <= 15 minutes)
o Delayed (15 minutes < Delay)
e Chose 15 minutes as Delayed based on the
definition from Department of Transportation
e Early is by far our majority class representing
57.2% of flights
e On-Time is the second most common
occurrence representing 25.1% of flights
e Delayed is the rarest occurrence representing
17.8% of flights

count

1e6 Departure Delay Class Distribution

EARLY ON-TIME DELAYED
Departure Delay Class
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Percent of Rows with Null Values Per Feature
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Graph Based Features

e Create a graph utilizing the source and destination airports for each flight.

e Calculated the frequency of flights between different airports (edge weights)

e Compute PageRank and rejoin PageRank with the datasets to replace ORIGIN_AIPORT_ID, and
DEST_AIRPORT_ID

e PageRank of airports weighted by number of flights will rank relative importance of airports
based on how many outgoing/incoming flights there are.

e Model can thus utilize this information to better predict flight delays.

Num Flights: 14246

Airport [ Airport
DFW CLT

Num Flights: 14112



Time Series and Numeric Features

e Time Series Features needing further processing: e For Numeric Features, utilize a
Scheduled Departure Datetime, Four Hours
Before Departure Datetime, Two Hours Before
Departure Datetime, Weather Station
Datetime (4 hours before departure).

o Extract only the hour and minute from
these datetimes. X — median(X)

RobustScalar to scale all columns
based on the median and
interquartile range.

8l
|l

e Cyclically encode temporal features. 75th quantile(x) — 95th quantile(x)
o Preserves periodicity of the features so the

model can learn continuous temporal

patterns (weekly, monthly, quarterly, etc) t — Sin 2mt )

o Added benefit of keeping the range of sin max(t)
values from [-1, 1]

o Utilized for MLP as it can help predict t — COS( 2mt )
nonlinearity of time patterns. coS max(t) 14



Categorical Features

High Cardinality Features (Target Encoding)

e We defined Highly Cardinal Features as any
features with > 100 unique categories.

e We then grouped by each feature and
calculated the mean delay time.

e Rejoined it back in order to have a numeric
feature instead of a one-hot encoded feature
and reduced cardinality significantly.

e Risk of Data Leakage with this method (Refer to
later Section)

Low Cardinality Features

e One-Hot Encoded the remaining
categorical features.

e Our entire Feature Space is now 221
different features (numeric + categorical
features)

most_freq_cat most_freq_count

num_unique
OP_UNIQUE_CARRIER 14 WN
ORIGIN_AIRPORT_ID 320 10397
TAIL_NUM 4896 N480HA
OP_CARRIER_FL_NUM 6948 469
ORIGIN_STATE_ABR 53 CA
DEST_AIRPORT_ID 322 10397
DEST_STATE_ABR 53 CA
YEAR 1 2015
origin_station_id 319 |72219013874
origin_type 3 large_airport
dest_station_id 321 |72219013874
dest_type 3 large_airport
STATION 319 |72219013874
HourlyCloudCoverage 10 BKN

HourlyCloudLayerAmount 9

7

1245811
376945
3767
3942
699590
376740
699782
5725795
376945
5268302
376740
5265133
376945
1569633
1569443



Principal Component Analysis

e For one experiment, run PCA, a dimensionality
reduction technique to find a lower
dimensional vector(s) that maximizes the
variance.

o To find 2nd, 3rd, 4th, nth principal
component, repeat the process but with
a new vector that is also orthogonal to
the other ones.

o This ensures that we reduce the
dimensionality while minimizing the
variance loss in the data.

e We used 110 principal components (50%
reduction of feature space) for our testing.




Hyperparameter Tuning

e Created subsamples from each year (2015-2018) instead of only using 2015.
e FEach yearly fold contains ~500,000 records to keep processing manageable.

e Combined folds form a CV training set that reflects multi-year temporal variability.

e This method supports efficient hyperparameter tuning on a diverse, time-aware dataset.

Blocked Cross-Validation (2015-2018)

Training
1 Validation

Cross-Validation Iteration (Fold)

2015 2016 2017 2018
Year



Hyperparameter Tuning

We experimented with three hyperparameter tuning techniques:
o Grid Search: Exhaustively evaluates a predefined grid of hyperparameter values.
o Random Search: Samples hyperparameter combinations randomly, offering a broader
exploration.
o Bayesian Optimization: Uses the Optuna library to “intelligently” sample hyperparameters

based on past evaluations.




Grid vs Random vs Bayesian Search

Grid Search
o In our experiments, Grid Search and Random Search both took similar runtimes (for example, exploring 9

hyperparameter combinations over a similar duration).

Random Search
o It performs comparably to Grid Search in terms of runtime for the same number of evaluations.

Bayesian Search (Optuna)
o Uses a probabilistic model to guide the hyperparameter search based on previous outcomes.

o  Each trial informs the next, allowing for more targeted exploration that often yields better metric scores.
o  However, because trials run sequentially (each taking roughly 10 minutes), the overall runtime is significantly

longer.

Conclusion: We chose Grid Search for our project because it is straightforward to implement, leverages parallel processing,

and is more runtime efficient, even though Bayesian Search may provide slightly better metric scores per trial.



Data Leakage

Data leakage occurs when information from outside the training set is used during model training, leading to overly
optimistic performance estimates. For example, if future flight delay data is included in training, the model might learn from

data that won't be available at prediction time.

How To Avoid Data Leakage?

e Robust Scaling: Fit RobustScaler on numeric features (e.g., DISTANCE,
ELEVATION, HourlyWindSpeed) using only training data in each fold, then
transform the test data.

e PageRank: Compute the PageRank feature on training data within each fold
and then transform the test data.

e Categorical Target Encoding: Encode high-cardinality features (e.g.,
TAIL_NUM, STATION) using training data only, then apply the transformation
and robust scaling to the test data.

e Resampling: Optionally apply upsampling, downsampling, or SMOTE on the
training data within each fold.

e Avoid Training Target Variable: Exclude the DEP_DELAY variable from the
final feature vector.

Use these methods uniformly when training on the complete 2015-2018 dataset.
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Model Pipeline - Inputs

° Cluster Details:

° Inputs:
o  ~28 raw input features expanded to ~221 after feature engineering o 5-10 Workers
e  Checkpointing: m  160-320 GB Memory
o After major transformations on our dataset, we checkpointed the dataset n 40-80 Cores
for experimentation with models without having to re-process with whole o 1 Driver
pipeline. m 128 GB Memory, 32 Cores
Feature Description Count Examples (Raw Features)
Family
Temporal Date/time related ~12 YEAR, MONTH, DAY_OF_MONTH, QUARTER, sched_depart_hour_UTC, etc.
features
Carrier & Flight | Airline and flight &5 OP_UNIQUE_CARRIER, OP_CARRIER_AIRLINE_ID, TAIL_NUM,
identifiers OP_CARRIER_FL_NUM
Airport & Origin/destination ~8 ORIGIN_AIRPORT_ID, DEST_AIRPORT_ID, origin_station_id, dest_station_id,
Geography airports origin_type, dest_type
Weather Weather conditions | ~10 HourlyDewPointTemperature, HourlyRelativeHumidity, HourlyVisibility, HourlyPrecipitation,

HourlyCloudCoverage, etc.



Model Pipeline - Block Diagram

PySpark ML Pipeline for Flight Delay Prediction

Data Ingestion & Pre-processing

SkyConditions &

DataPreprocessor DateTimeProcessor MissingValue

(Cleaning/Sorting) (Extract Hour/Minute) OutlierHandler Handler
Cleaning/Extraction

Raw Flight Data

Feature Engineering

TargetBinner GraphFeature TargetEncoder CyclicEncoder
(Create Delay Bins) (Airport PageRank) (Categorical Features) (Time-based Features)

Time-Based Cross-Validation

create_time_based_folds() R CustomCrossValidator ——P» RobustScaler (per fold)

Model Training & Evaluation

Resampling Methods Models Evaluation Final Pipeline
(SMOTE/Up/Downsampling) (LogReg, RandomForest, MLP) (F1, Accuracy, Precision) (Deployed Model)




Model Pipeline - Improvements

e Refactored to be more modular for testing
different models (previously hard-coded)

e Additional/modified Transformers:

o

o

o

o

e Resampling capabilities for class imbalance -

SMOTE, Upsampling, Downsampling

OutlierHandler
GraphFeature
TargetEncoder

MissingValueHandler*

PySpark ML Pipeline for Flight Delay Prediction

Data Ingestion & Pre-processing

. DataPreprocessor DateTimeProcessor
Raw Flight Data X .
(Cleaning/Sorting) (Extract Hour/Minute)

Feature Engineering

SkyConditions &
OutlierHandler
Cleaning/Extraction

MissingValue
Handler

TargetBinner GraphFeature TargetEncoder CyclicEncoder
(Create Delay Bins) (Airport PageRank) (Categorical Features) (Time-based Features)

create_time_based_folds() B CustomCrossValidator

Time-Based Cross-Validation

Model Training & Evaluation

——» RobustScaler (per fold)

|

Resampling Methods
SMOTE/Up/Downsampling)

Models
(LogReg, RandomForest, MLP)

I+

Evaluation
(F1, Accuracy, Precision)

I+

Final Pipeline
(Deployed Model)

|
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Data for Small Scale Experimentation

e 12 Month Dataset with Over-Sampling
o For this experimentation we used
a duplication over-sampling to
match the majority class (Early)
e Class Distribution:
o Early Class: 1842967
o On-Time: 1844086
o Delayed: 1844551
e Sequential Train/Test Split
o  First 80% of 2015 used for training
o Last 20% of 2015 used for testing

26



MLP Classifier (Experiment 1)

Architecture
e 6 layers: MLP Confusion Matrix
o Input layer: 189 features
o st hidden layer: 100 neurons . N 53650
o 2nd hidden layer: 50 neurons
o 3rd hidden layer: 25 neurons
o 4th hidden layer: 10 neurons
o Output layer: 3 classes S .- saam 50763
Results: §

e Training:

Accuracy: 44.65%
Weighted Precision: 43.94% ~- 42685 27513
F1Score: 43.61%

Accuracy: 46.43% ° -
Weighted Precision: 51.57%
F1Score: 47.81%

131336

78711

68101

250000

200000

- 150000

- 100000

- 50000



MLP Classifier (Experiment 2)

Architecture

e 7/ layers: MLP Confusion Matrix
o Input layer: 189 features
Ist hidden layer: 150 neurons
2nd hidden layer: 75 neurons
3rd hidden layer: 50 neurons
4th hidden layer: 25 neurons
5th hidden layer: 10 neurons § oot .
ResuliCI)S: Output layer: 3 classes g -
e Training: |
o Accuracy: 41.75%
o Weighted Precision: 28.19% ~- 39620 0 98679
o F1Score: 33.22%

o 245253 0 237458 200000

150000

O O O O O

- 50000

[ J
—
D
wn
o
=

o Accuracy: 41.31% ° it 2
o Weighted Precision: 42.26%
o F1Score: 38.90%



MLP Classifier (Experiment 3)

Architecture
e b5 layers:

o Input layer: 189 features
o st hidden layer: 150 neurons
o 2nd hidden layer: 75 neurons
o 3rd hidden layer: 20 neurons
o Output layer: 3 classes

Results:

e Training:

Accuracy: 37.66%
Weighted Precision: 46.54%
F1Score: 30.28%

Accuracy: 23.95%
Weighted Precision: 58.65%
F1Score: 14.17%

187

24

12

MLP Confusion Matrix

333407

130161

69246

3 §
Predicted

149117

81430

69041

300000

250000

200000

- 150000

- 100000

- 50000
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Phase 2 Model Comparisons Across Evaluation

Model

Decision Tree
(Baseline)

Logistic
Regression

Random Forest

Random Forest
(with Lasso
Feature
Selection)

Precision

Metrics

Train
Recall

0.570

0.582

0.5762

0.5715

Accuracy Precision

Test
Recall

0.586

0.561

0.5968

0.5958

Test
Accuracy

0.586

0.561

0.5968

0.5958



Phase 3 Model Comparisons Across Evaluation Metrics

Model

Logistic Regression
w/under-sampling

Logistic Regression
w/over-sampling

Random Forest
w/under-samping

Random Forest w/
over-sampling

MLP 1w/
under-sampling

MLP 2 w/
under-sampling

MLP 1w/ over-sampling

MLP 2 w/ over-sampling

MLP 1w/ over-sampling

and PCA

Train F1

0.450

0.461

0.545

0.446

0.454

0.442

0.456

0.384

0.455

Train

Precision

0.451

0.470

0.552

0.476

0.460

0.452

0.469

0.465

0.467

Train

Recall

0.455

0.481

0.550

0.483

0.462

0.457

0.481

0.47

0.479

Train

Accuracy

0.455

0.481

0.550

0.483

0.462

0.457

0.481

047

0.479

Test F1

0.493

0.542

0.500

0.544

0.503

0.502

0.539

0.491

0.534

Test

Precision

0.537

0.545

0.545

0.543

0.548

0.542

0.543

0.538

0.542

Test Recall

0.479

0.550

0.480

0.575

0.488

0.491

0.549

0.541

0.547

Test

Accuracy

0.479

0.553

0.480

0.575

0.488

0.491

0.549

0.541

0.547
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Model

Logistic Regression

Random Forest
w/under-sampling

Random Forest
w/over-sampling
(Best Model)

MLP 1and 2

Phase 3 Hyperparameters

Hyperparameters

maxIter=300, regParam=0.10,
elasticNetParam=0.0

numTrees=20, maxDepth=15
numTrees=15, maxDepth=10

maxlter=50, StepSize=0.05
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Best Model (RF w/ Over-Sampling)

e Individual Class Metrics: Random Forest w/ Over-Sampling CM
o Early:
m Precision: 66.42% S 2.48737e+06 185861 448839

m Recall: 79.67%
o On-Time:
m Precision: 39.15%
m Recall: 15.31%
o Delayed:
m Precision: 33.59%
m Recall: 36.28%
e Even with class balancing techniques 6 S 87876 393428
we still struggled with predicting the
On-Time and Delayed classes

— - 721059 176125 253562

Actual

0 1 2
Predicted

le6

2.0

1.5

- 1.0

- 0.5
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Conclusion

e Designed for Scalability:
o  Built a distributed, modular pipeline with strong data leakage prevention (e.g., fold-specific
transformations, target encoding isolation).
o Compared multiple hyperparameter tuning strategies (Grid Search, Random Search, and
Bayesian Optimization) to balance performance with runtime efficiency.
e Best Model:
o  Our Random Forest classifier with oversampling achieved the best performance (Test F1 =
54.4%) with high accuracy for Early departures (the majority class).
e Performance Gaps:
o Class imbalance remains a key challenge—strong performance for Early, but On-Time and
Delayed classes need improvement.
e Operational Value:
o Despite prediction challenges for on-time and delayed classes, early classifications from
this model still have the potential to improve crew scheduling, gate planning, and customer
communication.



