
04.01.25

Phase 3:
Flight Delay Prediction
SECTION 3, TEAM 1

Members: Sebastian Rosales, 
Kenneth Hahn, Benjamin He, 
Edgar Munoz, Adam Perez, 
Kent Bourgoing



Group Members

Sebastian Rosales
sbsrosales11@berkeley.edu

Kenneth Hahn
hahnkenneth@berkeley.edu

Benjamin He
ben_he@berkeley.edu

Edgar Munoz
edgarmunoz@berkeley.edu

Adam Perez
adperez@berkeley.edu

Kent Bourgoing
kent1bp@berkeley.edu



3

Abstract
Project Description
Exploratory Data Analysis

1.

2.

3.

Feature Engineering

Model Results

4.

7.

Model Experiments6.

Conclusion8.

Model Pipeline5.



Abstract
● Problem:

○ Flight delays are a widespread issue; our team developed a predictive model to 
classify departures as Early, On-Time, or Delayed using flight and weather data.

● Data Sources
○ Combined U.S. Department of Transportation flight data with NOAA weather data; 

over 28 million records analyzed.
● Modeling Approach

○ Extensive feature engineering (including PageRank for airport centrality), time-series 
encoding, and resampling methods to address class imbalance.

○ Models: Logistic Regression, Decision Tree, Random Forest, and MLP
● Best Model

○ A Random Forest classifier with oversampling achieved the best performance (Test F1 
= 54.4%) with high accuracy for Early departures.



5

Abstract
Project Description
Exploratory Data Analysis

1.

2.

3.

Feature Engineering

Model Results

4.

7.

Model Pipeline6.

Conclusion8.

Model Experiments5.



6

● Air travel is a complex web of logistics that 
needs to be handled precisely in order to 
coordinate departures and arrivals for 45,000 
flights and 2.9M passengers per day.

● It is beneficial for both airlines and for 
passengers to be able to predict whether a 
given flight will be delayed or not for a variety 
of reasons:

○ Operational Efficiency: optimizing crew 
scheduling, ground handling, and gate 
assignments.

○ Customer Satisfaction: Allows for airlines 
to notify customers ahead of time to 
reduce stress and allow them to plan 
ahead.

Science Presentation

Background



Goal
● Utilizing flight data provided by the U.S. Department of Transportation and meteorological data 

provided by the National Oceanic and Atmospheric Administration repository (NOAA), our goal 
for this project is as follows:

Classify and predict flight departure times ahead of the scheduled flight to 
determine whether a given flight will depart early, on-time, or late.



8

Abstract
Project Description
Exploratory Data Analysis

1.

2.

3.

Feature Engineering

Model Results

4.

7.

Model Experiments6.

Conclusion8.

Model Pipeline5.



Numerical Analysis
● Strong negative correlations:

○ ELEVATION and HourlyStationPressure

● Strong positive correlations:

○ DISTANCE and DISTANCE_GROUP

○ HourlyAltimeterSetting and 

HourlySeaLevelPressure

○ HourlyDewPointTemperature, 

HourlyDryBulbTemperature, and 

HourlyWetBulbTemperature

● From 3-Month to 12-Month LONGITUDE lost 

all of its correlation to temperature features



Target Variable Analysis
● We are interested in classifying 3 classes

○ Early (Delay < 0 minutes)

○ On-Time (0 <= Delay <= 15 minutes)

○ Delayed (15 minutes < Delay)

● Chose 15 minutes as Delayed based on the 

definition from Department of Transportation

● Early is by far our majority class representing 

57.2% of flights

● On-Time is the second most common 

occurrence representing 25.1% of flights

● Delayed is the rarest occurrence representing 

17.8% of flights 



11

Abstract
Project Description
Exploratory Data Analysis

1.

2.

3.

Feature Engineering

Model Results

4.

7.

Model Experiments6.

Conclusion8.

Model Pipeline5.



12

● We filled in missing values with a new 
“missing” category for categorical 
values and filled in “0” for Hourly 
Precipitation (as described in the data 
dictionary)

● For all other categories, we dropped 
missing values (leading to 9.65% of 
rows dropped).

○ Deemed acceptable as we still 
had 28M rows of data after 
dropping.

Missing Values



Graph Based Features
● Create a graph utilizing the source and destination airports for each flight.
● Calculated the frequency of flights between different airports (edge weights)
● Compute PageRank and rejoin PageRank with the datasets to replace ORIGIN_AIPORT_ID, and 

DEST_AIRPORT_ID
● PageRank of airports weighted by number of flights will rank relative importance of airports 

based on how many outgoing/incoming flights there are.
● Model can thus utilize this information to better predict flight delays.

Airport 
DFW

Airport 
CLT

Num Flights: 14246

Num Flights: 14112



14

● Time Series Features needing further processing: 
Scheduled Departure Datetime, Four Hours 
Before Departure Datetime, Two Hours Before 
Departure Datetime, Weather Station 
Datetime (4 hours before departure).

○ Extract only the hour and minute from 
these datetimes.

● Cyclically encode temporal features.
○ Preserves periodicity of the features so the 

model can learn continuous temporal 
patterns (weekly, monthly, quarterly, etc)

○ Added benefit of keeping the range of 
values from [-1, 1]

○ Utilized for MLP as it can help predict 
nonlinearity of time patterns.

Time Series and Numeric Features
● For Numeric Features, utilize a 

RobustScalar to scale all columns 
based on the median and 
interquartile range.



Categorical Features

● We defined Highly Cardinal Features as any 
features with > 100 unique categories.

● We then grouped by each feature and 
calculated the mean delay time.

● Rejoined it back in order to have a numeric 
feature instead of a one-hot encoded feature 
and reduced cardinality significantly.

● Risk of Data Leakage with this method (Refer to 
later Section)

High Cardinality Features (Target Encoding)

Low Cardinality Features

● One-Hot Encoded the remaining 
categorical features.

● Our entire Feature Space is now 221 
different features (numeric + categorical 
features)



Principal Component Analysis
● For one experiment, run PCA, a dimensionality 

reduction technique to find a lower 
dimensional vector(s) that maximizes the 
variance.

○ To find 2nd, 3rd, 4th, nth principal 
component, repeat the process but with 
a new vector that is also orthogonal to 
the other ones.

○ This ensures that we reduce the 
dimensionality while minimizing the 
variance loss in the data. 

● We used 110 principal components (50% 
reduction of feature space) for our testing.



17

● Created subsamples from each year (2015–2018) instead of only using 2015.

● Each yearly fold contains ~500,000 records to keep processing manageable.

● Combined folds form a CV training set that reflects multi-year temporal variability.

● This method supports efficient hyperparameter tuning on a diverse, time-aware dataset.

Hyperparameter Tuning



18

● We experimented with three hyperparameter tuning techniques:

○ Grid Search: Exhaustively evaluates a predefined grid of hyperparameter values.

○ Random Search: Samples hyperparameter combinations randomly, offering a broader 

exploration.

○ Bayesian Optimization: Uses the Optuna library to “intelligently” sample hyperparameters 

based on past evaluations.

Hyperparameter Tuning



19

Grid Search
○ In our experiments, Grid Search and Random Search both took similar runtimes (for example, exploring 9 

hyperparameter combinations over a similar duration).

Random Search
○ It performs comparably to Grid Search in terms of runtime for the same number of evaluations.

Bayesian Search (Optuna)
○ Uses a probabilistic model to guide the hyperparameter search based on previous outcomes.

○ Each trial informs the next, allowing for more targeted exploration that often yields better metric scores.

○ However, because trials run sequentially (each taking roughly 10 minutes), the overall runtime is significantly 

longer.

Conclusion: We chose Grid Search for our project because it is straightforward to implement, leverages parallel processing, 

and is more runtime efficient, even though Bayesian Search may provide slightly better metric scores per trial.

Grid vs Random vs Bayesian Search



20

Data leakage occurs when information from outside the training set is used during model training, leading to overly 

optimistic performance estimates. For example, if future flight delay data is included in training, the model might learn from 

data that won’t be available at prediction time.

How To Avoid Data Leakage?

Data Leakage

● Robust Scaling: Fit RobustScaler on numeric features (e.g., DISTANCE, 
ELEVATION, HourlyWindSpeed) using only training data in each fold, then 
transform the test data.

● PageRank: Compute the PageRank feature on training data within each fold 
and then transform the test data.

● Categorical Target Encoding: Encode high-cardinality features (e.g., 
TAIL_NUM, STATION) using training data only, then apply the transformation 
and robust scaling to the test data.

● Resampling: Optionally apply upsampling, downsampling, or SMOTE on the 
training data within each fold.

● Avoid Training Target Variable: Exclude the DEP_DELAY variable from the 
final feature vector.

Use these methods uniformly when training on the complete 2015-2018 dataset.



21

Abstract
Project Description
Exploratory Data Analysis

1.

2.

3.

Feature Engineering

Model Results

4.

7.

Model Experiments6.

Conclusion8.

Model Pipeline5.



Model Pipeline - Inputs
● Inputs:

○ ~28 raw input features expanded to ~221 after feature engineering

● Checkpointing: 

○ After major transformations on our dataset, we checkpointed the dataset 

for experimentation with models without having to re-process with whole 

pipeline.

● Cluster Details:

○ 5-10 Workers

■ 160-320 GB Memory

■ 40-80 Cores

○ 1 Driver

■ 128 GB Memory, 32 Cores

Feature 
Family

Description Count Examples (Raw Features)

Temporal Date/time related 
features

~12 YEAR, MONTH, DAY_OF_MONTH, QUARTER, sched_depart_hour_UTC, etc.

Carrier & Flight Airline and flight 
identifiers

~5 OP_UNIQUE_CARRIER, OP_CARRIER_AIRLINE_ID, TAIL_NUM, 
OP_CARRIER_FL_NUM

Airport & 
Geography

Origin/destination 
airports

~8 ORIGIN_AIRPORT_ID, DEST_AIRPORT_ID, origin_station_id, dest_station_id, 
origin_type, dest_type

Weather Weather conditions ~10 HourlyDewPointTemperature, HourlyRelativeHumidity, HourlyVisibility, HourlyPrecipitation, 
HourlyCloudCoverage, etc.



Model Pipeline - Block Diagram



Model Pipeline - Improvements
● Refactored to be more modular for testing 

different models (previously hard-coded)

● Additional/modified Transformers:

○ OutlierHandler

○ GraphFeature

○ TargetEncoder

○ MissingValueHandler*

● Resampling capabilities for class imbalance - 

SMOTE, Upsampling, Downsampling



25

Abstract
Project Description
Exploratory Data Analysis

1.

2.

3.

Feature Engineering

Model Results

4.

7.

Model Experiments6.

Conclusion8.

Model Pipeline5.



26

● 12 Month Dataset with Over-Sampling

○ For this experimentation we used 

a duplication over-sampling to 

match the majority class (Early)

● Class Distribution:

○ Early Class: 1842967

○ On-Time: 1844086

○ Delayed: 1844551

● Sequential Train/Test Split

○ First 80% of 2015 used for training

○ Last 20% of 2015 used for testing

Data for Small Scale Experimentation



MLP Classifier (Experiment 1)

● 6 layers:
○ Input layer: 189 features
○ 1st hidden layer: 100 neurons
○ 2nd hidden layer: 50 neurons
○ 3rd hidden layer: 25 neurons
○ 4th hidden layer: 10 neurons
○ Output layer: 3 classes

Architecture

Results:
● Training:

○ Accuracy: 44.65%
○ Weighted Precision: 43.94%
○ F1 Score: 43.61%

● Test:
○ Accuracy: 46.43%
○ Weighted Precision: 51.57%
○ F1 Score: 47.81%



MLP Classifier (Experiment 2)

● 7 layers:
○ Input layer: 189 features
○ 1st hidden layer: 150 neurons
○ 2nd hidden layer: 75 neurons
○ 3rd hidden layer: 50 neurons
○ 4th hidden layer: 25 neurons
○ 5th hidden layer: 10 neurons
○ Output layer: 3 classes

Architecture

Results:
● Training:

○ Accuracy: 41.75%
○ Weighted Precision: 28.19%
○ F1 Score: 33.22%

● Test:
○ Accuracy: 41.31%
○ Weighted Precision: 42.26%
○ F1 Score: 38.90%



MLP Classifier (Experiment 3)

● 5 layers:
○ Input layer: 189 features
○ 1st hidden layer: 150 neurons
○ 2nd hidden layer: 75 neurons
○ 3rd hidden layer: 20 neurons
○ Output layer: 3 classes

Architecture

Results:
● Training:

○ Accuracy: 37.66%
○ Weighted Precision: 46.54%
○ F1 Score: 30.28%

● Test:
○ Accuracy: 23.95%
○ Weighted Precision: 58.65%
○ F1 Score: 14.17%



30

Abstract
Project Description
Exploratory Data Analysis

1.

2.

3.

Feature Engineering

Model Results

4.

7.

Model Experiments6.

Conclusion8.

Model Pipeline5.



31

Phase 2 Model Comparisons Across Evaluation 
Metrics

Model

Train F1 Train 
Precision

Train 
Recall

Train 
Accuracy

Test F1 Test 
Precision

Test 
Recall

Test 
Accuracy

Decision Tree 
(Baseline)

0.470 0.445 0.570 0.570 0.505 0.460 0.586 0.586

Logistic 
Regression

0.520 0.525 0.582 0.582 0.537 0.523 0.561 0.561

Random Forest 0.4240 0.4492 0.5762 0.5762 0.4461 0.3562 0.5968 0.5968

Random Forest 
(with Lasso 
Feature 
Selection)

0.4490 0.4935 0.5715 0.5715 0.4597 0.4297 0.5958 0.5958



32

Phase 3 Model Comparisons Across Evaluation Metrics

Model
Train F1 Train 

Precision
Train 

Recall
Train 

Accuracy
Test F1 Test 

Precision
Test Recall Test 

Accuracy

Logistic Regression 
w/under-sampling

0.450 0.451 0.455 0.455 0.493 0.537 0.479 0.479

Logistic Regression 
w/over-sampling

0.461 0.470 0.481 0.481 0.542 0.545 0.550 0.553

Random Forest 
w/under-samping

0.545 0.552 0.550 0.550 0.500 0.545 0.480 0.480

Random Forest w/ 
over-sampling

0.446 0.476 0.483 0.483 0.544 0.543 0.575 0.575

MLP 1 w/ 
under-sampling

0.454 0.460 0.462 0.462 0.503 0.548 0.488 0.488

MLP 2 w/ 
under-sampling

0.442 0.452 0.457 0.457 0.502 0.542 0.491 0.491

MLP 1 w/ over-sampling 0.456 0.469 0.481 0.481 0.539 0.543 0.549 0.549

MLP 2 w/ over-sampling 0.384 0.465 0.471 0.471 0.491 0.538 0.541 0.541

MLP 1 w/ over-sampling 
and PCA

0.455 0.467 0.479 0.479 0.534 0.542 0.547 0.547



33

Phase 3 Hyperparameters
Model Hyperparameters

Logistic Regression maxIter=300, regParam=0.10, 
elasticNetParam=0.0

Random Forest 
w/under-sampling

numTrees=20, maxDepth=15

Random Forest 
w/over-sampling

(Best Model)

numTrees=15, maxDepth=10

MLP 1 and 2 maxIter=50, StepSize=0.05



34

● Individual Class Metrics:
○ Early:

■ Precision: 66.42%
■ Recall: 79.67%

○ On-Time:
■ Precision: 39.15%
■ Recall: 15.31%

○ Delayed:
■ Precision: 33.59%
■ Recall: 36.28%

● Even with class balancing techniques 
we still struggled with predicting the 
On-Time and Delayed classes

Best Model (RF w/ Over-Sampling)



35

Abstract
Project Description
Exploratory Data Analysis

1.

2.

3.

Feature Engineering

Model Results

4.

7.

Model Experiments6.

Conclusion8.

Model Pipeline5.



Conclusion
● Designed for Scalability:

○ Built a distributed, modular pipeline with strong data leakage prevention (e.g., fold-specific 
transformations, target encoding isolation).

○ Compared multiple hyperparameter tuning strategies (Grid Search, Random Search, and 
Bayesian Optimization) to balance performance with runtime efficiency.

● Best Model:
○ Our Random Forest classifier with oversampling achieved the best performance (Test F1 = 

54.4%) with high accuracy for Early departures (the majority class).
● Performance Gaps:

○ Class imbalance remains a key challenge—strong performance for Early, but On-Time and 
Delayed classes need improvement.

● Operational Value: 
○ Despite prediction challenges for on-time and delayed classes, early classifications from 

this model still have the potential to improve crew scheduling, gate planning, and customer 
communication.


