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Introduction

The Keeling Curve is the representation of rising atmospheric carbon dioxide (𝐶𝑂2) levels, first measured
continuously in 1958 by geochemist Charles David Keeling at the Mauna Loa Observatory in Hawaii. This
curve represents two main insights: a regular seasonal cycle in 𝐶𝑂2 concentrations and a steady upward
trend over decades. The seasonal pattern is primarily due to photosynthesis variation, as Earth’s vegetation
cover changes between the northern and southern hemispheres. The long-term increase, however, corre-
lates strongly with human activities, especially fossil fuel combustion, which continually adds 𝐶𝑂2 to the
atmosphere. Below is a visualization of the base keeling curve data used throughout this report:
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Figure 1: Keeling Curve from 1959 to 1997

In this analysis, we will examine the characteristics of the Mauna Loa 𝐶𝑂2 data using the co2 dataset
available in R, which provides monthly mean 𝐶𝑂2� levels from 1958 to 1997. The goal is to uncover insights
into the seasonal and long-term trends in 𝐶𝑂2 concentrations, explore potential drivers, and consider the
implications for understanding climate change. By examining this data from a 1997 perspective, we aim to
build a foundation for assessing whether 𝐶𝑂2 levels pose an environmental challenge that requires further
investigation. We want to better understand what trends and patterns in atmospheric carbon dioxide
(𝐶𝑂2) levels are evident from the Mauna Loa Observatory data, and what these trends suggest about the
relationship between human activity and climate change.
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EDA

After loading the keeling data available in R from 1958 - 1997 We first assessed a few key charts to better
understand how the data is behaving. Below you can see a plot of the Keeling curve yearly mean values.
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After looking at the overall trend we then wanted to better understand the ACF and PACF plots. The
ACF plot for the monthly 𝐶𝑂2 concentration shows a slow, gradual decay, indicating a strong persistence in
the data, which suggests non-stationarity and the presence of a trend. Each monthly observation is highly
correlated with prior months, supporting the idea of a consistent upward trend. The PACF plot, on the
other hand, shows a significant spike at lag 1 and smaller spikes at seasonal lags (12, 24, etc.).
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Given the nature of the initial yearly mean we decided to apply a smoothing technique. A backward moving
average smoother is a technique used to smooth time series data by calculating the average of a specified
number of past observations. For each point in the series, it takes the current value and a set number of
previous values and averages them, giving a smoothed value for that point. For example, with a 12-month
window, the smoothed value for each month is the average of that month’s 𝐶𝑂2 level and the preceding 11
months. This method helps to reduce short-term fluctuations and highlights the longer-term trend in the
data. The following plot displays the Backward Moving Average Smoother for Monthly Mean 𝐶𝑂2.
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Backward Moving Average Smoother

The moving average line highlights the long-term increase in 𝐶𝑂2 levels while filtering out short-term seasonal
fluctuations, providing a clearer view of the upward trend. This smoothing approach helps reveal the
consistent growth in atmospheric 𝐶𝑂2 over time.

We next wanted to understand the seasonality trends in the data more.The seasonal plot below shows the
monthly mean 𝐶𝑂2 levels from 1959 to 1997, arranged by month to highlight seasonal patterns over the
years. Each line represents 𝐶𝑂2 levels for a particular year, with the months displayed along the x-axis.
The plot reveals a clear seasonal cycle: 𝐶𝑂2 levels typically increase from January to May, peak around
mid-year, and then decrease from July to October before rising again towards the end of the year. This
pattern reflects the natural cycle of photosynthesis, where vegetation absorbs more 𝐶𝑂2 during the warmer
months. There is also a steady upward trend in 𝐶𝑂2 levels across all months, indicating an overall increase
in atmospheric 𝐶𝑂2 over time.
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Seasonal Plot: Monthly Mean CO2 for 1959−1997

The next visualization we looked into shows two decompositions of monthly CO� data: additive (left) and
log-transformed multiplicative (right). The log transformation typically helps stabilize trends with increasing
variance over time. However, both the additive and multiplicative plots display a rising trend with relatively
constant seasonal fluctuations, so the log transformation may not significantly impact variance stabilization
in this case.
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To finish up our initial EDA we compared the classical additive decomposition (top) with the STL multi-
plicative decomposition (bottom) of 𝐶𝑂2 data. The classical model shows higher residual autocorrelation
compared to the STL decomposition (with log transformation), suggesting that the STL model better cap-
tures the data’s structure and reduces unexplained variation. However, notable autocorrelation remains at
certain lags (e.g., 3, 4, 5) in the STL model.
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Model Development

Linear and Quadratic Time Trend Models

After our initial EDA We looked at 4 different models to start: a linear time trend model, a quadratic time
trend model, and then two models applying the log tranformation to the data for each model type. Below
you can see the models being fit:

fit_linear <- co2_tsib %>%
model(trend_model = TSLM(value ~ trend()))

fit_linear_log <- co2_tsib %>%
model(trend_model = TSLM(log_value ~ trend()))

fit_quadratic <- co2_tsib %>%
model(trend_model = TSLM(value ~ trend()+I(trend()^2)))

fit_quadratic_log <- co2_tsib %>%
model(trend_model = TSLM(log_value ~ trend()+I(trend()^2)))
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Residual Plots of Linear and Quadratic Models

The figure above compares the residuals of linear and quadratic time trend models for 𝐶𝑂2 data, both
with and without log transformation. The residuals in all models show strong seasonal patterns, indicating
that neither the linear nor quadratic trends alone fully capture the seasonal component. However, the log-
transformed models exhibit lower residual variation, suggesting improved variance stabilization. Additionally,
the quadratic models show lower residual variation and capture the data better than the linear models.
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The ACF plots for the residuals show persistent autocorrelation across all models, indicating that none fully
capture the data’s structure, and the residuals do not resemble white noise. The log-transformed models
(top right and bottom right) exhibit slightly reduced autocorrelation, suggesting an improved fit, but still
show significant residual correlation, especially at seasonal lags (e.g., 12 and 24 months). This indicates that
additional seasonal components or model refinements may be needed for a better fit.
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The PACF plots of the residuals, similar to the ACF plots, indicate persistent partial autocorrelation across
all models. This suggests that the models do not fully capture the underlying patterns in the data. While
the log-transformed models (top right and bottom right) slightly reduce partial autocorrelation at lower lags,
significant spikes remain, especially around seasonal lags like 12 months.

Table 1: AIC, AICc, and BIC Comparison for Models

Model AIC AICc BIC
Linear 904.8343 904.8861 917.2798
Log-Linear -4591.4423 -4591.3906 -4578.9969
Quadratic 735.4090 735.4954 752.0029
Log-Quadratic -4710.0834 -4709.9970 -4693.4895

The table compares the AIC, AICc, and BIC values for four time trend models (Linear, Log-Linear,
Quadratic, Log-Quadratic) fitted to 𝐶𝑂2 data. The Log-Quadratic model has the lowest values across
AIC, AICc, and BIC, indicating the best fit among the models, followed closely by the Log-Linear model.
The higher values for the Linear and Quadratic models suggest that they do not capture the data structure
as effectively.

Based on the previous residual time series, ACF, and PACF analyses, as well as the information criteria
values, a logarithmic transformation appears appropriate. It reduces the variability of the residuals, lowers
autocorrelation and partial autocorrelation in the residuals, and results in lower information criteria values
compared to the non-logarithmic models.

Next, we will fit logarithmic-transformed quadratic models of various orders with seasonal dummy variables
to determine which best fits the data.

fit_poly_2_season <- co2_tsib %>%
model(trend_model = TSLM(log_value ~ trend()+I(trend()^2)+ season()))

fit_poly_3_season <- co2_tsib %>%
model(trend_model = TSLM(log_value ~ trend()+I(trend()^2)+ I(trend()^3) + season()))
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fit_poly_4_season <- co2_tsib %>%
model(trend_model = TSLM(log_value ~ trend()+I(trend()^2)+ I(trend()^3) + I(trend()^4) + season()))

Table 2: AIC, AICc, and BIC Comparison for Quadratic Models with Seasonal Component

Model AIC AICc BIC
Log-Polynomial - 2nd order -5713.443 -5712.381 -5651.216
Log-Polynomial - 3rd order -6116.446 -6115.240 -6050.071
Log-Polynomial - 4th order -6130.651 -6129.291 -6060.127

The table above compares AIC, AICc, and BIC values for Log-Quadratic models of different polynomial
orders (2nd, 3rd, and 4th) fitted to 𝐶𝑂2 data. The information criteria values for the 3rd and 4th order
models are approximately 400 units lower than those of the 2nd order model. While the 4th-order Log-
Quadratic model has the lowest values, the differences in AIC, AICc, and BIC between the 3rd and 4th
orders are minimal.

The Ljung-Box test is used to assess if residuals from a time series model are independently distributed, which
is ideal for a good model fit. The null hypothesis (𝐻0) states that residuals are independent (white noise),
while the alternative hypothesis (𝐻𝐴) suggests they have autocorrelation. The test statistic (𝑄) considers
the sample size, autocorrelation at each lag (𝜌), and the number of lags tested (ℎ), with 𝑄 following a
chi-square distribution under 𝐻0.

𝑄 = 𝑛(𝑛 + 2)Σℎ
𝑘=1

̂𝜌2
𝑘

𝑛 − 𝑘
If the null is rejected, it indicates serial correlation in the residuals, suggesting that the model may not
adequately capture the data’s structure.

We found that the Ljung-Box test statistic is high and the p-value is low for all models, so we reject the null
hypothesis of no autocorrelation, concluding that the residuals are autocorrelated in each model.
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In the residual plots displayed above, the three models show fluctuations over time, with the second-order
model exhibiting more pronounced variations. As the polynomial order increases, residuals appear slightly
more stabilized, especially in the 3rd and 4th order models.

All models show diminishing autocorrelation over time, with the 3rd and 4th order models having notably less
significant autocorrelation, especially in the PACF plots. The ACF plot for the 2nd order model decreases
more slowly than for the 3rd and 4th orders, suggesting that higher-order models reduce residual correlation.

Residual distributions across all three models are approximately normal, though slightly more centered in
the 3rd and 4th order models.

Given the minimal differences in AIC, AICc, and BIC between the 3rd and 4th order models, both of which
are significantly lower than the 2nd order, and considering that the residual plots for the 3rd and 4th orders
exhibit lower variance and reduced residual correlation at higher lags, the 3rd-order polynomial model is
preferred for forecasting.
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log(CO2) = 𝛽0 + 𝛽1 ⋅ 𝑡 + 𝛽2 ⋅ 𝑡2 + 𝛽3 ⋅ 𝑡3 +
11

∑
𝑖=1

𝛾𝑖 ⋅ Season𝑖 + 𝜖

This choice balances model fit with simplicity, avoiding unnecessary complexity and potential overfitting
associated. It’s important to note that our model violates the assumption that the residuals are white noise,
which may impact the accuracy of our forecast.
Now that we have selected a model we want to visualize the forecast trend.
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Forecast of Monthly Mean CO2 Levels from 1998 to 2020

This plot shows the forecasted 𝐶𝑂2 levels from 1998 to 2020 based on a 3nd-order polynomial model.
The prediction follows the historical trend, with seasonal fluctuations and an upward trend in 𝐶𝑂2 levels.
The shaded areas represent 80% and 95% confidence intervals, which widen over time, indicating increased
uncertainty in longer-term predictions. This widening suggests that while the model anticipates a continued
upward trend with seasonal patterns, there is greater variability in potential outcomes as we approach 2020.

ARIMA Times Series Models

In order to fit an ARIMA model there is some additional EDA needed. Let’s firts perform a unit root test
on the log-transformed series to assess if differencing is necessary to achieve stationarity.

##
## Augmented Dickey-Fuller Test
##
## data: co2_tsib$log_value
## Dickey-Fuller = -3.2669, Lag order = 7, p-value = 0.0765
## alternative hypothesis: stationary

Since the p-value is greater than the conventional significance level of 0.05, we fail to reject the null hypothesis
that the series is non-stationary. This suggests that the series may exhibit non-stationary behavior, indicating
that additional differencing may be needed to achieve stationarity.
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The ACF plot of the monthly log-transformed mean 𝐶𝑂2 shows a slow decay over time, suggesting the
presence of a unit root and potential non-stationarity in the series.

Given the non-stationarity indicated by the previous ADF test and ACF plot of the log-transformed series,
we will difference the series to transform it into a stationary series.
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Differenced Monthly Log of Mean CO2 Time Series

This plot displays the differenced monthly log of mean 𝐶𝑂2, with the time series plot in the top panel and
the ACF and PACF plots below. The differenced series shows reduced trend and variability. The ACF plot
exhibits significant spikes at seasonal lags (e.g., 12 months), while the PACF plot has a few notable lags,
especially around seasonal intervals. This pattern suggests that the differenced series retains some seasonal
correlation, but is closer to meeting stationarity assumptions.

The ACF plot above displays a strong seasonal pattern with slowly decaying lags, suggesting the possible
presence of a unit root at the seasonal frequency, which may necessitate seasonal differencing. This strong
seasonal pattern may also indicate the presence of at least one AR component. Additionally, it is challenging
to clearly identify non-seasonal AR and MA components. The slow decay in the PACF plot hints at at least
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one MA component. Meanwhile, the ACF shows significance at the first two lags, possibly indicating up to
two AR lags, though this could be influenced by seasonal effects. It is possible that the model may have up
to two AR lags or potentially no AR lags at all.

To build an ARIMA model, we will fit four different ARIMA models and compare their performance. The
first three models will be based on initial assumptions with increasing complexity, while the fourth model
will be automatically selected by R.

The first model includes only non-seasonal and seasonal differencing components set to order 1, specified as
ARIMA(0,1,0)(0,1,0). The second model adds both a non-seasonal and a seasonal MA term at order 1, while
maintaining non-seasonal and seasonal differencing at order 1, specified as ARIMA(0,1,1)(1,1,0). The third
model also sets non-seasonal and seasonal differencing to order 1 but adds a non-seasonal AR term of order
1, a non-seasonal MA term of order 1, and a seasonal AR term of order 1, specified as ARIMA(1,1,1)(1,1,0).

# Set a random seed for reproducibility
set.seed(123)

arima_fit <- co2_tsib %>%
model(
model_1 = ARIMA(log_value~0+pdq(0,1,0)+PDQ(0,1,0)),
model_2 = ARIMA(log_value~0+pdq(0,1,1)+PDQ(1,1,0)),
model_3 = ARIMA(log_value~0+pdq(1,1,1)+PDQ(1,1,0)),
model_4 = ARIMA(log_value),
best_model = ARIMA(log_value~0+pdq(0,1,0)+PDQ(0,1,1))
)

## Series: log_value
## Model: ARIMA(0,1,0)(0,1,0)[12]
##
## sigma^2 estimated as 2.318e-06: log likelihood=2425.3
## AIC=-4848.59 AICc=-4848.58 BIC=-4844.47

## Series: log_value
## Model: ARIMA(0,1,1)(1,1,0)[12]
##
## Coefficients:
## ma1 sar1
## -0.3715 -0.4516
## s.e. 0.0476 0.0428
##
## sigma^2 estimated as 1.939e-06: log likelihood=2499.41
## AIC=-4992.82 AICc=-4992.77 BIC=-4980.46

## Series: log_value
## Model: ARIMA(1,1,1)(1,1,0)[12]
##
## Coefficients:
## ar1 ma1 sar1
## 0.1668 -0.5225 -0.4482
## s.e. 0.1342 0.1186 0.0430
##
## sigma^2 estimated as 1.94e-06: log likelihood=2500.05
## AIC=-4992.1 AICc=-4992.01 BIC=-4975.62
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## Series: log_value
## Model: ARIMA(0,1,3)(1,1,0)[12]
##
## Coefficients:
## ma1 ma2 ma3 sar1
## -0.3512 0.0026 -0.1136 -0.4434
## s.e. 0.0469 0.0476 0.0470 0.0431
##
## sigma^2 estimated as 1.934e-06: log likelihood=2502.62
## AIC=-4995.24 AICc=-4995.11 BIC=-4974.64

The ARIMA(0,1,0)(0,1,0) model is the simplest and performs the worst, with the highest AIC and BIC
values. The ARIMA(0,1,1)(1,1,0) model shows improvement, with AIC and BIC values approximately 144
points lower than those of model 1. The ARIMA(1,1,1)(1,1,0) model has nearly identical AIC and BIC
values to model 2, indicating that the non-seasonal AR(1) term does not significantly improve the fit. The
ARIMA(0,1,3)(1,1,0) model has the lowest AIC and BIC values, indicating a slightly better fit than the
second and third model. However, the improvement over model 2 and 3 is minimal.

Let’s perform a Ljung-Box tests to assess if residuals from a the time series models are independently
distributed

Table 3: Ljung-Box Test Results for ARIMA Models

Ljung-Box p-value Model
0.0000022 ARIMA Model 1
0.0019529 ARIMA Model 2
0.0033722 ARIMA Model 3
0.0066913 ARIMA Model 4

Based on the Ljung-Box test, the p-value is less than 5% for all models, and we reject the null hypothesis of
no serial correlation.

The residual plots for each model were examined.
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Residual Analysis for  ARIMA Model 4

Based on the plots, there is some type of outlier present in the residuals for all models in January 1960. The
residual on January 1960 has a value of ‘-2.013132e-02,’ approximately ‘-0.02011184’ lower than the residual
mean. Adjusting parameters by adding AR and MA terms did not remove this anomaly. Examination of
both raw and transformed data revealed no errors. This high residual may indicate a unique shift in the
𝐶𝑂2 pattern in January 1960 that the models fail to capture.

Since the Ljung-Box test and residual plots indicated that the residuals do not resemble white noise, we need
to adjust the ARIMA model to include some MA terms to include this serial correlation in our model.

After testing various parameters, the best ARIMA model, with the fewest parameters, lower AIC and BIC
values than previous models, and residuals resembling white noise, is:

ARIMA(0, 1, 0) × (0, 1, 1)12

## Series: log_value
## Model: ARIMA(0,1,0)(0,1,1)[12]
##
## Coefficients:
## sma1
## -0.9415
## s.e. 0.0280
##
## sigma^2 estimated as 1.717e-06: log likelihood=2544.61
## AIC=-5085.21 AICc=-5085.18 BIC=-5076.97

## # A tibble: 1 x 2
## lb_pvalue Model
## <dbl> <chr>
## 1 0.945 Best ARIMA Model

Based on the Ljung-Box test, the p-value is greater than 5%, and we fail to reject the null hypothesis of no
serial correlation.
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Residual Analysis for  ARIMA(0,1,0)(0,1,1)[12]

The residual analysis for the ARIMA(0,1,0)(0,1,1)[12] model indicates that the residuals are close to white
noise. The time plot shows residuals centered around zero, with no obvious patterns, suggesting that
the model captures most of the trend and seasonality in the data. The histogram of residuals is roughly
symmetric, indicating a normal distribution. The ACF and PACF plots reveal no significant autocorrelation
at different lags, with all values remaining within the significance bounds.

The following plot displays the forecasted monthly mean 𝐶𝑂2 levels from 1998 to 2022 using an
ARIMA(0,1,0)(0,1,1)[12] model.
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Forecast of Monthly Mean CO2 Levels from 1998 to 2022

The forecast follows the observed data trend, capturing both the seasonal fluctuations and the general upward
trajectory in 𝐶𝑂2 concentration. The shaded areas represent the 80% and 95% confidence intervals, which
widen over time, indicating increasing uncertainty in the forecast as it extends further into the future. This
suggests that while the model is effective at capturing the trend and seasonality, the precision of long-term
predictions decreases.
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Forecasting Atmospheric CO2 Growth

Using our ARIMA model, we can generate predictions for when atmospheric 𝐶𝑂2 is expected to be at 420
ppm and 500 ppm levels. To estimate the earliest date (first time) these thresholds are reached, we examine
the upper bound of the 95% confidence interval. Likewise, we can use the the lower bound of the 95%
confidence interval to find the latest date when 𝐶𝑂2 levels reach 420 ppm and 500 ppm.Additionally, we can
pinpoint the first date when the predicted average atmospheric 𝐶𝑂2 level is expected to reach 420 ppm and
500 ppm.

The table below provides the earliest forecasted dates, or “first times,” when atmospheric 𝐶𝑂2 levels are
projected to reach 420 ppm and 500 ppm. The estimates include the mean forecast and the 95% confidence
interval. The model indicates, with 95% confidence, that the earliest date when the 𝐶𝑂2 levels are likely to
reach 420 ppm is by April 2016, while for 500 ppm, it is anticipated around April 2040.

Table 4: Forecast Summary with 95% Confidence Intervals

Level First_Time First_Mean_Estimate First_Lower_95 First_Upper_95
420 ppm 2016 Apr 396.8926 374.2075 420.9529
500 ppm 2040 Apr 438.0234 382.7225 501.3149

The table below presents the the latest date, or “last times” when atmospheric 𝐶𝑂2 levels are expected to
exceed 420 ppm and 500 ppm. However, due to increasing variance over time, the 95% lower confidence
interval begins to decline, making it impossible to provide a definitive “last time” within the forecasted period.
This uncertainty indicates that while levels are projected to cross 420 ppm and 500 ppm, the predictions
suggest that these levels might not reach those thresholds until sometime after 2100.

Table 5: Forecast Summary with 95% Confidence Intervals for Last
Observations

Level Last_Time Last_Mean_Estimate Last_Lower_95 Last_Upper_95
420 ppm >2100 NA NA NA
500 ppm >2100 NA NA NA

The table below provides the projected dates when the mean atmospheric 𝐶𝑂2 levels are expected to reach
420 ppm and 500 ppm. These estimates include the mean forecasted value along with the 95% confidence
interval. According to the model, 𝐶𝑂2 levels are likely to reach 420 ppm by April 2030, with a 95% confidence
interval ranging from 379.91 to 465.19 ppm. Levels are expected to reach 500 ppm by May 2072, with a
wider confidence interval ranging from 385.46 to 649.65 ppm due to increased uncertainty over the longer
forecasting horizon.

Table 6: Forecast Summary with 95% Confidence Intervals for
Mean Estimates

Level Time Mean_Estimate Lower_95 Upper_95
420 ppm 2030 Apr 420.39 379.91 465.19
500 ppm 2072 May 500.41 385.46 649.65

We can also project 𝐶𝑂2 levels for the year 2100. The table below displays the estimated average 𝐶𝑂2
concentration in ppm, along with the corresponding 95% confidence interval.
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Table 7: Forecast for CO2 Levels in 2100 with 95% Confidence
Intervals

Mean Estimate (ppm) Lower 95% CI (ppm) Upper 95% CI (ppm)
556.73 376.58 820

The estimated mean 𝐶𝑂2 concentration for the year 2100. The 95% confidence interval ranges from 376.58
ppm to 820.00 ppm. This wide interval highlights the increasing variability and uncertainty in projections as
we move further into the future. For that reason, we are uncertain about the accuracy of previous predictions
due to the long time range involved. However, if our predictions were constrained to a shorter timeframe
(such as within a year or two after the last observed data point in 1997) the model would likely yield more
accurate and reliable forecasts, as shorter-term predictions reduce the accumulation of uncertainties and
better reflect the observed data trends.

Shifting to the Present Point of View

Now, we turn our attention to the modern Mauna Loa 𝐶𝑂2 dataset, and attempt to complete the following:

1. Evaluate the performance of our best-performing linear and ARIMA models trained on 1997 data to
determine accuracy and generalizability of time series models on Mauna Loa 𝐶𝑂2 data.

2. Train and evaluate new models using a longer period of training data (up until 2022), and determine
if a better model can be fit with the additional information.

3. Perform new predictions on when we expect to see 𝐶𝑂2 levels of 420 ppm and 500 ppm for the first
and last time, and generate a long-term prediction for 𝐶𝑂2 levels in 2122.

Initial EDA of more recent data

In this section of the report, we aim to evaluate the performance of our linear and ARIMA models derived
from 1997 data on known, observed data up until 2024. Then, with the new data period, we again attempt
to find and fit the best model for predicting 𝐶𝑂2 in the future. Since 1997, in addition to sporadic data
outages due to equipment malfunction or minor data adjustments due to data collection errors, two major
scale changes were implemented - first in 2017 then again in 2021 to the latest X2019 scale. These scale
changes are retroactively applied to all data, meaning that pre-1997 data is also changed to a varying degree.
Finally, the modern 𝐶𝑂2 data used in this section has weekly granularity, as opposed to the monthly cadence
from before.

Create a modern data pipeline

Given the improved capabilities of recording 𝐶𝑂2 data we are now able to obtain the latest 𝐶𝑂2 data from
the NOAA Global Monitoring Library, we directly imported from noaa.gov using a permalink to its latest
weekly Mauna Loa 𝐶𝑂2 data release.

Table 8: Weekly CO2 Levels at Mauna Loa

year month day decimal average ndays 1 year ago 10 years ago increase since 1800 date
1974 5 19 1974.380 333.37 5 -999.99 -999.99 50.40 1974-05-19
1974 5 26 1974.399 332.95 6 -999.99 -999.99 50.06 1974-05-26
1974 6 2 1974.418 332.35 5 -999.99 -999.99 49.60 1974-06-02
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year month day decimal average ndays 1 year ago 10 years ago increase since 1800 date
1974 6 9 1974.437 332.20 7 -999.99 -999.99 49.65 1974-06-09
1974 6 16 1974.456 332.37 7 -999.99 -999.99 50.06 1974-06-16
1974 6 23 1974.475 331.73 5 -999.99 -999.99 49.72 1974-06-23

We conducted a similar EDA on this updated data and found the following trends:
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From a macro perspective, it appears that the yearly average 𝐶𝑂2 is continuing its upward trend, with the
rate of growth slowly increasing as well in recent years.
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The ACF and PACF charts here reaffirm our findings in the first section of the report, again depicting strong
evidence for a trend in the data and an autoregressive process.
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The moving average line, coupled with the time series plot, demonstrate a continuing trend from previous
data in a cyclical 𝐶𝑂2 pattern throughout the year, with a steady underlying increasing trend that appears
to depict a slowly rising slope.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

19
80

19
90

20
00

20
10

20
20

19
80

19
90

20
00

20
10

20
20

19
80

19
90

20
00

20
10

20
20

19
80

19
90

20
00

20
10

20
20

19
80

19
90

20
00

20
10

20
20

19
80

19
90

20
00

20
10

20
20

19
80

19
90

20
00

20
10

20
20

19
80

19
90

20
00

20
10

20
20

19
80

19
90

20
00

20
10

20
20

19
80

19
90

20
00

20
10

20
20

19
80

19
90

20
00

20
10

20
20

19
80

19
90

20
00

20
10

20
20

325

350

375

400

425

Month and Year

C
O

2 
pa

rt
s 

pe
r 

m
ill

io
n

Seasonal Plot: Monthly Mean CO2 for 1974−Present

Isolating months of the year to account for seasonality, we can clearly see the aforementioned increasing
trend that has continued to persist from the previous section, and the slowly increasing slope.
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The decomposition charts clearly show the cyclical seasonality and increasing trend over time of 𝐶𝑂2 data.

Compare linear model forecasts against realized CO2

First, we evaluate the simple linear and polynomial models trained using 1997 data on present observed data
to evaluate their efficacy.
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Comparing the linear models that we attempted in the first section, we observe that the Poly 2 Seasonal
model actually performs the best when evaluated against our true, observed data from 1998 onwards.
Previously, we found that the Poly 3 Seasonal model had the best performance when only observing data
up until 1998. This shows that the alarming growth of 𝐶𝑂2 is outpacing expectations by even the best
predictions in 1998.

Compare ARIMA models forecasts against realized CO2

Next, we consider the ARIMA models trained on 1997 data.
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Again, we observe that the best model selected in the previous section of the report is not the best-performing
model when compared against true observed data. Here, the 𝐴𝑅𝐼𝑀𝐴(0, 1, 0)(0, 1, 0) model actually outper-
forms the more complex 𝐴𝑅𝐼𝑀𝐴(0, 1, 0)(0, 1, 1) model. The discrepancy highlights that simpler structures
may better capture underlying trends in this case.
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Evaluate the performance of 1997 linear and ARIMA models

We previously predicted that 𝐶𝑂2 levels would surpass 420ppm in 2030, on average, with it occuring as soon
as 2016 or as late as beyond 2100 around 95% of the time. In reality, we see that 𝐶𝑂2 levels have already
been observed to surpass 420 ppm in 2022, towards the early end of that scale.

Table 9: Accuracy Comparison of Linear Models

Model ME RMSE MAE MPE MAPE ACF1
Linear 13.1411177 15.0957095 13.1411177 3.2671290 3.2671290 0.9776995
Log-Linear 0.0268173 0.0306366 0.0268290 0.4472125 0.4474115 0.9688562
Quadratic 0.1652185 2.3079722 1.9530049 0.0331849 0.4962282 0.8400328
Log-Quadratic -0.0046458 0.0076443 0.0061562 -0.0776005 0.1029947 0.8470648
Poly 2 with Season -0.0049783 0.0056780 0.0050267 -0.0830763 0.0838963 0.9065832
Poly 3 with Season 0.0451137 0.0567314 0.0451137 0.7511693 0.7511693 0.9886045
Poly 4 with Season 0.0735580 0.0950903 0.0735580 1.2243355 1.2243355 0.9888532

Table 10: Accuracy Comparison of ARIMA Models

Model ME RMSE MAE MPE MAPE ACF1
ARIMA(0,1,0)(0,1,1) 0.0173361 0.0211135 0.0173489 0.2887905 0.2890069 0.9839047
ARIMA(0,1,0)(0,1,0) 0.0017088 0.0034547 0.0025353 0.0283778 0.0422602 0.8418235
ARIMA(0,1,1)(1,1,0) 0.0108738 0.0132751 0.0108845 0.1811571 0.1813383 0.9694969
ARIMA(1,1,1)(1,1,0) 0.0126900 0.0153098 0.0126907 0.2114428 0.2114540 0.9735963
ARIMA(0,1,3)(1,1,0) 0.0141811 0.0169895 0.0141815 0.2363050 0.2363128 0.9760387

Here, using the accuracy chart, we can see a more concrete representation of the best linear and ARIMA
models. For linear models, the Poly 2 model performed the best (as opposed to the Poly 3 model in the
previous section). For ARIMA models, the 𝐴𝑅𝐼𝑀𝐴(0, 1, 0)(0, 1, 0) model performed the best (as opposed
to the 𝐴𝑅𝐼𝑀𝐴(0, 1, 0)(0, 1, 1) model in the previous section).

Train best models on present data

We then proceed to create two versions of our modern 𝐶𝑂2 data - one adjusted for seasonality and one
without the adjustment. For both versions of the data, we perform a train/test split and train new ARIMA
models.

Table 11: Optimal ARIMA Models

Model Parameters
ARIMA (NSA) <ARIMA(0,1,4) w/ drift>
ARIMA (SA) <ARIMA(1,1,5)>

Table 12: Model Accuracy Comparison

Model ME RMSE MAE MPE MAPE ACF1
ARIMA (NSA, In-Sample) 0.0000008 0.0068748 0.0024066 -0.0001020 0.0408001 0.0019715
ARIMA (SA, In-Sample) 0.0006486 0.0070459 0.0027668 0.0108393 0.0469349 -0.0091240
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Model ME RMSE MAE MPE MAPE ACF1
ARIMA (NSA, Out-of-Sample) 0.0097573 0.0111894 0.0097573 0.1613020 0.1613020 0.9208802
ARIMA (SA, Out-of-Sample) 0.0125555 0.0141959 0.0125859 0.2077661 0.2082709 0.8997722
Polynomial Trend (In-Sample) 0.0000000 0.0097243 0.0060202 -0.0002736 0.1020717 0.6849691
Polynomial Trend (Out-of-Sample) 0.0004418 0.0055330 0.0046832 0.0072279 0.0775276 0.8658350

The learned best parameters are ARIMA(0,1,4) w/ drift for the non-seasonally adjusted data and
ARIMA(1,1,5) for the seasonally adjusted data. The polynomial trend model appears to be relatively equal
in performance to the ARIMA models.

How bad could it get?

Armed with the models trained on the latest-available data, we again perform the prediction tasks to deter-
mine when we expect 𝐶𝑂2 to surpass 420 ppm and 500 ppm for the first time, and when we expect to last
see a 𝐶𝑂2 level under 420 ppm and 500 ppm respectively.

Table 13: CO2 Threshold Forecasts

Level First Time Date Last Time Date
420 ppm 2022-10-30 2092-07-13
500 ppm 2034-07-09 2122-10-25

Here, we can see that the expected time for 𝐶𝑂2 levels to hit 420ppm is late 2022, which is a lot closer to
reality. All other dates appear to have pushed forward from the 1997 estimate as well, with the date that
we last observe a 𝐶𝑂2 level under 420ppm already within scope in 2092. However, since the Last Time Date
for 500ppm above is the last date of our predicted range, we can say that the date where we last observe a
𝐶𝑂2 level under 500ppm is still further out than 2122.

Finally, examining the longer-term predictions for the year 2122, one hundred years out from the last date
in the training data in our model, we obtain the following conclusions:

Table 14: Forecasted CO2 Levels in 2122

Week Mean Estimate (ppm) Lower 95% CI (ppm) Upper 95% CI (ppm)
2122-01-04 658.6951 453.1971 957.3743
2122-01-11 658.7535 453.1971 957.3743
2122-01-18 658.8119 453.1971 957.3743
2122-01-25 658.8704 453.1971 957.3743
2122-02-01 658.9288 453.1971 957.3743
2122-02-08 658.9873 453.1971 957.3743
2122-02-15 659.0457 453.1971 957.3743
2122-02-22 659.1042 453.1971 957.3743
2122-03-01 659.1626 453.1971 957.3743
2122-03-08 659.2211 453.1971 957.3743
2122-03-15 659.2795 453.1971 957.3743
2122-03-22 659.3380 453.1971 957.3743
2122-03-29 659.3965 453.1971 957.3743
2122-04-05 659.4550 453.1971 957.3743
2122-04-12 659.5135 453.1971 957.3743
2122-04-19 659.5720 453.1971 957.3743
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Week Mean Estimate (ppm) Lower 95% CI (ppm) Upper 95% CI (ppm)
2122-04-26 659.6305 453.1971 957.3743
2122-05-03 659.6890 453.1971 957.3743
2122-05-10 659.7475 453.1971 957.3743
2122-05-17 659.8060 453.1971 957.3743
2122-05-24 659.8645 453.1971 957.3743
2122-05-31 659.9230 453.1971 957.3743
2122-06-07 659.9816 453.1971 957.3743
2122-06-14 660.0401 453.1971 957.3743
2122-06-21 660.0987 453.1971 957.3743
2122-06-28 660.1572 453.1971 957.3743
2122-07-05 660.2158 453.1971 957.3743
2122-07-12 660.2743 453.1971 957.3743
2122-07-19 660.3329 453.1971 957.3743
2122-07-26 660.3914 453.1971 957.3743
2122-08-02 660.4500 453.1971 957.3743
2122-08-09 660.5086 453.1971 957.3743
2122-08-16 660.5672 453.1971 957.3743
2122-08-23 660.6258 453.1971 957.3743
2122-08-30 660.6844 453.1971 957.3743
2122-09-06 660.7429 453.1971 957.3743
2122-09-13 660.8016 453.1971 957.3743
2122-09-20 660.8602 453.1971 957.3743
2122-09-27 660.9188 453.1971 957.3743
2122-10-04 660.9774 453.1971 957.3743
2122-10-11 661.0360 453.1971 957.3743
2122-10-18 661.0946 453.1971 957.3743
2122-10-25 661.1533 453.1971 957.3743

Table 15: Mean CO2 Forecast for 2122

Mean Estimate (ppm) Lower 95% CI (ppm) Upper 95% CI (ppm)
659.923 453.1971 957.3743

It is difficult to have high confidence in these predictions due to a couple of reasons. Firstly, due to the
significant time gap between our last observed data and the predicted time range, there could be a lot of
potential deviation, trends, outliers, or other external influencers that can cause a deviation that our current
model cannot capture. As we have seen in the past, conflicting interests between increasing global economic
output at the expense of increased 𝐶𝑂2 emissions, and the various efforts to curb these emissions and protect
the environment can cause significant changes to established trends. Secondly, also due to the significant
time gap, the confidence interval is signficantly expanded, creating a large range of approximately 400pm
and thus diminishing the tangible value of the predicted range results. Furthermore, it is difficult to factor
in the improvement in technology that would take place in the next 100 years, as technology is currently
rapidly evolving requiring higher resources like in the case with GPUs.
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